Dimensionality reduction

Makoto Yamada
myamada@i.kyoto-u.ac.jp

Kyoto University

June/10/2019

Review of the last lecture (Feature selection and sparsity)

- Feature selection: Wrapper method, Filter method, and Embedded method
- Wrapper method (Selecting features that maximize prediction accuracy. Computationally expensive.)
- Filter method (Use mutual information to select features, e.g., MR, mRMR, QPFS, etc.)
- Embedded method (Selecting features during training. e.g., Lasso)
- Alternating Direction Method of Multipliers (ADMM).
- Advanced method: HSIC Lasso

Dimensionality and Feature selection

Dimensionality reduction is a method to reduce the dimensionality of data.

- Feature selection is a dimensionality reduction method. Select a set of m features among d features $(m<d)$.
- We tend to use feature selection if we want to interpret features.
- In dimensionality reduction, we may not need to interpret each feature.
- We tend to use dimensionality reduction to compress data, to visualize data, etc.

Dimensionality Reduction

Dimension reduction is to find a low-dimensional mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}(d>m)$.

- It is useful for data visualization, computational/space efficiency, etc.
- Compression: keep the original information as much as possible
- The feature selection selects a set of features, while the dimensionality reduction outputs the combination of features.

Typically, dimensionality reduction can be categorized as

- Linear dimension reduction $\boldsymbol{z}=\boldsymbol{U}^{\top} \boldsymbol{x}\left(\boldsymbol{U} \in \mathbb{R}^{d \times m}\right)$.

- Nonlinear dimension reduction $\boldsymbol{z}=\boldsymbol{g}(\boldsymbol{x})$. For example, deep learning model: $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{\sigma}\left(\boldsymbol{W}_{1}\left(\boldsymbol{\sigma}\left(\boldsymbol{W}_{2}\right)\right)\right)$

Dimensionality Reduction (Principal Component Analysis)

The principal component analysis (PCA) is a popular method:

$$
\max _{\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}} \operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{R} \boldsymbol{U}\right)
$$

where $\boldsymbol{R}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \in \mathbb{R}^{d \times d}$ (we assume $\mathbb{E}[\boldsymbol{x}]=\mathbf{0}$) is the covariance matrix.

Idea: Find a direction that maximizes the variance

Obtain the first principal component

To obtain the first principal component:

$$
\max _{\boldsymbol{u}^{\top} \boldsymbol{u}=1 .} \boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u}=\max _{\boldsymbol{u}} \frac{\boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u}}{\|\boldsymbol{u}\|_{2}^{2}}
$$

where $\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|_{2}}$ is a unit vector and $\frac{\boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u}}{\|\boldsymbol{u}\|_{2}^{2}}$ is called as the Rayleigh quotient.
Using the Lagrange multiplier (λ) to find a critical point:

$$
L(\boldsymbol{u})=\boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u}-\lambda\left(\boldsymbol{u}^{\top} \boldsymbol{u}-1\right)
$$

To take the derivative with respect to \boldsymbol{u}, we have

$$
\frac{\partial L(\boldsymbol{u})}{\partial \boldsymbol{u}}=2 \boldsymbol{R} \boldsymbol{u}-2 \lambda \boldsymbol{u}=\mathbf{0} \rightarrow \boldsymbol{R} \boldsymbol{u}=\lambda \boldsymbol{u} .
$$

This is an eigenvalue decomposition problem where λ is the eigenvalue and \boldsymbol{u} is the eigenvector.

Obtain the k-th principal component

To obtain the k-th principal component, we extract the $k-1$ principal components from \boldsymbol{x}_{i} :

$$
\boldsymbol{x}_{i}^{(k)}=\boldsymbol{x}_{i}-\sum_{s=1}^{k-1}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{u}_{s}\right) \boldsymbol{u}_{s}
$$

and compute the covariance matrix with the subtracted vectors \boldsymbol{R}_{k}. Then we obtain the k-th principal component as

$$
\boldsymbol{u}_{k}=\underset{\boldsymbol{u}^{\top} \boldsymbol{u}=1 .}{\operatorname{argmax}} \quad \boldsymbol{u}^{\top} \boldsymbol{R}_{k} \boldsymbol{u}
$$

PCA with eigenvalue decomposition of symmetric matrix

PCA can be solved by simply do eigenvalue decomposition of \boldsymbol{R} ! The eigenvalue decomposition of covariance matrix $\boldsymbol{R} \in \mathbb{R}^{d \times d}$:

$$
\boldsymbol{R}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top}
$$

where

- $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right) \in \mathbb{R}^{d \times d}$, where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$. If \boldsymbol{R} is a positive definite matrix $\lambda_{d} \geq 0$.
- $\boldsymbol{U} \in \mathbb{R}^{\boldsymbol{d} \times \boldsymbol{d}}$ is an orthogonal matrix $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{I}_{d}$
- $\operatorname{tr}(\boldsymbol{R})=\operatorname{tr}\left(\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top}\right)=\operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{U} \mathbf{\Lambda}\right)=\sum_{i=1}^{d} \lambda_{i}$.

Relationship to the Linear Auto-encoder (1/2)

Assume that $\mathbb{E}[\boldsymbol{x}]=\mathbf{0}$. Then, consider the following linear Auto-encoder problem:

$$
\min _{\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}} \frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2}
$$

The loss function term can be written as

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{i}-2 \boldsymbol{x}_{i}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_{i}+\boldsymbol{x}_{i}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_{i}\right) \\
& \propto-\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}^{\top} \boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_{i}\right) \quad\left(\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}\right) \\
& =-\frac{1}{n} \sum_{i=1}^{n}\left(\operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{U}\right)\right) \quad(\operatorname{tr}(\boldsymbol{A} \boldsymbol{B})=\operatorname{tr}(\boldsymbol{B} \boldsymbol{A})) \\
& =-\operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{R} \boldsymbol{U}\right), \quad\left(\boldsymbol{R}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}\right)
\end{aligned}
$$

Relationship to the Linear Auto-encoder (2/2)

The minimization problem can be written as the maximization problem:

$$
\min _{\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}} \frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{U} \boldsymbol{U}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2}, \leftrightarrow \max _{\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}} \operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{R} \boldsymbol{U}\right)
$$

Thus, PCA is related to the linear Auto-encoder.
Idea: Find a direction that maximizes the variance

Nonlinear Auto-encoder (Deep auto-encoder)

We consider the following Auto-encoder problem:

$$
\min _{\Theta} \frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{f}_{x}\left(\boldsymbol{g}_{x}\left(\boldsymbol{x}_{i}\right)\right)\right\|_{2}^{2}
$$

Idea: Find a direction that maximizes the variance

Stochastic Neighbor Embedding (SNE)

Stochastic Neighbor Embedding (SNE):
The asymmetric probability $p_{i j}$ that i-th sample would pick j-th sample as its neighbor:

$$
p_{i j}=\frac{\exp \left(-d_{i j}^{2}\right)}{\sum_{k \neq i} \exp \left(-d_{k i}^{2}\right)}, \quad d_{i j}^{2}=\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}}{2 \sigma_{i}^{2}},
$$

where σ_{i} is a tuning parameter.
The model:

$$
q_{i j}=\frac{\exp \left(-\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|\boldsymbol{y}_{k}-\boldsymbol{y}_{i}\right\|_{2}^{2}\right)}
$$

Optimization:

$$
\min _{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

Symmetric Stochastic Neighbor Embedding (SNE)

Stochastic Neighbor Embedding (SNE):
The symmetric probability $p_{i j}$ that i-th sample would pick j-th sample as its neighbor:

$$
p_{i j}=\frac{\exp \left(-d_{i j}^{2}\right)}{\sum_{k \neq 1} \exp \left(-d_{k l}^{2}\right)}, \quad d_{i j}^{2}=\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}}{2 \sigma^{2}},
$$

where σ is a tuning parameter.
The model:

$$
q_{i j}=\frac{\exp \left(-\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2}\right)}{\sum_{k \neq 1} \exp \left(-\left\|\boldsymbol{y}_{k}-\boldsymbol{y}_{l}\right\|_{2}^{2}\right)}
$$

Optimization:

$$
\min _{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

t-Stochastic Neighbor Embedding (SNE)

The asymmetric probability $p_{i j}$ that i-th sample would pick j-th sample as its neighbor:

$$
p_{i j}=\frac{\exp \left(-d_{i j}^{2}\right)}{\sum_{k \neq 1} \exp \left(-d_{i k}^{2}\right)}, \quad d_{i j}^{2}=\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}}{2 \sigma^{2}},
$$

where σ is a tuning parameter.
The model (Cauchy distribution):

$$
q_{i j}=\frac{\left(1+\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|\boldsymbol{y}_{k}-\boldsymbol{y}_{l}\right\|_{2}^{2}\right)^{-1}}
$$

Optimization:

$$
\min _{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n}} \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

t-SNE illustration

Image taken from [1]

(a) Visualization by t-SNE.
t-SNE is heavily used in biology data such as the expression data.

Multi-modal Dimensionality Reduction Methods

PCA and auto-encoders are for uni-modal input (i.e., only image or only text).
How to do dimensionality reduction for multi-modal data (i.e., image and text)?
We have $(\boldsymbol{x}, \boldsymbol{y})$, where $\boldsymbol{x} \in \mathbb{R}^{d_{x}}$ and $\boldsymbol{y} \in \mathbb{R}^{d_{y}}$.

- Linear dimension reduction $\boldsymbol{z}_{x}=\boldsymbol{U}^{\top} \boldsymbol{x}$ and $\boldsymbol{z}_{y}=\boldsymbol{V}^{\top} \boldsymbol{y} . \boldsymbol{U} \in \mathbb{R}^{d_{x} \times m}$ and $\boldsymbol{U} \in \mathbb{R}^{d_{y} \times m}$.
- Nonlinear dimension reduction $\boldsymbol{z}_{x}=\boldsymbol{g}_{\boldsymbol{x}}(\boldsymbol{x})$ and $\boldsymbol{z}_{y}=\boldsymbol{g}_{\boldsymbol{y}}(\boldsymbol{y})$.

Canonical Correlation Analysis (1/3)

Canonical Correlation Analysis (CCA) is to find dimensionality reduction that maximize the similarity between $\boldsymbol{z}_{x}=\boldsymbol{U}^{\top} \boldsymbol{x}$ and $\boldsymbol{z}_{y}=\boldsymbol{V}^{\top} \boldsymbol{y}$.

Let us assume that $\mathbb{E}[\boldsymbol{x}]=\mathbf{0}$ and $\mathbb{E}[\boldsymbol{y}]=\mathbf{0}$. We want to maximize the correlation:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{z}_{x, i}^{\top} \boldsymbol{z}_{y, i} & =\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\top} \boldsymbol{U} \boldsymbol{V}^{\top} \boldsymbol{y}_{i} \\
& =\operatorname{tr}\left(\boldsymbol{U}^{\top} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}^{\top} \boldsymbol{V}\right) \\
& =\operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{R}_{x y} \boldsymbol{V}\right)
\end{aligned}
$$

where $\boldsymbol{R}_{x y}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}^{\top} \in \mathbb{R}^{d_{x} \times d_{y}}$.

Canonical Correlation Analysis (CCA) (2/3)

The optimization problem of CCA is given as

$$
\begin{aligned}
\max _{\boldsymbol{U}, \boldsymbol{v}} & \operatorname{tr}\left(\boldsymbol{U}^{\top} \boldsymbol{R}_{x y} \boldsymbol{V}\right), \\
\text { s.t. } & \boldsymbol{U}^{\top} \boldsymbol{R}_{x x} \boldsymbol{U}=\boldsymbol{I}, \boldsymbol{V}^{\top} \boldsymbol{R}_{y y} \boldsymbol{V}=\boldsymbol{I},
\end{aligned}
$$

where $\boldsymbol{R}_{x x}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}$ and $\boldsymbol{R}_{y y}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{\top}$.
Then, CCA can be written as

$$
\begin{array}{cl}
\max _{\boldsymbol{U}, \boldsymbol{V}} & \operatorname{tr}\left(\left[\begin{array}{ll}
\boldsymbol{U}^{\top} & \boldsymbol{V}^{\top}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{R}_{x y} \\
\boldsymbol{R}_{x y}^{\top} & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{U} \\
\boldsymbol{V}
\end{array}\right]\right), \\
\text { s.t. } & {\left[\begin{array}{ll}
\boldsymbol{U}^{\top} & \boldsymbol{V}^{\top}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{R}_{x x} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{R}_{y y}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{U} \\
\boldsymbol{V}
\end{array}\right]=\boldsymbol{I},}
\end{array}
$$

This is a generalized eigenvalue decomposition (GEV) problem.

Canonical Correlation Analysis (CCA) (3/3)

Let us transform the variables as

$$
\left[\begin{array}{c}
\overline{\boldsymbol{U}} \\
\overline{\boldsymbol{V}}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R}_{x x}^{1 / 2} & \boldsymbol{O} \\
\boldsymbol{O} & \boldsymbol{R}_{y y}^{1 / 2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{U} \\
\boldsymbol{V}
\end{array}\right]
$$

we can rewrite the CCA optimization problem as

$$
\begin{array}{ll}
\max _{\overline{\boldsymbol{U}}, \overline{\boldsymbol{V}}} & \frac{1}{2} \operatorname{tr}\left(\left[\begin{array}{cc}
\overline{\boldsymbol{U}}^{\top} & \overline{\boldsymbol{V}}^{\top}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{O} & \boldsymbol{R}_{x x}^{-1 / 2} \boldsymbol{R}_{x y} \boldsymbol{R}_{y y}^{-1 / 2} \\
\left(\boldsymbol{R}_{x x}^{-1 / 2} \boldsymbol{R}_{x y} \boldsymbol{R}_{y y}^{-1 / 2}\right)^{\top} & \boldsymbol{O}
\end{array}\right]\left[\begin{array}{l}
\overline{\boldsymbol{U}} \\
\overline{\boldsymbol{V}}
\end{array}\right]\right) \\
\text { s.t. } & {\left[\begin{array}{cc}
\overline{\boldsymbol{U}}^{\top} & \overline{\boldsymbol{V}}^{\top}
\end{array}\right]\left[\begin{array}{c}
\overline{\boldsymbol{U}} \\
\overline{\boldsymbol{V}}
\end{array}\right]=\boldsymbol{I},}
\end{array}
$$

Thus, we can solve the CCA problem by using eigenvalue decomposition!

Multivariate Regression

Multivariate regression is a regression problem to predict multiple output variables $\boldsymbol{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}(m>1)$. If $m=1$, it is a uni-variate regression.

Training dataset $\left\{\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right\}_{i=1}^{n}$

- $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$: feature vector
- $\boldsymbol{y}_{i} \in \mathbb{R}^{m}$: real-valued target vector

Multivariate linear regression model:

$$
\boldsymbol{y}=\boldsymbol{W}^{\top} \boldsymbol{x}
$$

where $\boldsymbol{W} \in \mathbb{R}^{d \times m}$ and ${ }^{\top}$ is matrix transpose.

Solution of the multivariate regression

The optimization problem can be written as

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{d \times m}} \sum_{i=1}^{n}\left\|\boldsymbol{y}_{i}-\boldsymbol{W}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2}
$$

where $\|\boldsymbol{x}\|_{2}=\sqrt{\sum_{k=1}^{d}\left(x^{(k)}\right)^{2}}$ is the ℓ_{2} norm.
Let us denote $\boldsymbol{Y}=\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right] \in \mathbb{R}^{m \times n}$ and
$\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right] \in \mathbb{R}^{d \times n}$. Then, the optimization problem can be written as

$$
\min _{\boldsymbol{W}}\left\|\boldsymbol{Y}-\boldsymbol{W}^{\top} \boldsymbol{X}\right\|_{F}^{2}
$$

where $\|\boldsymbol{W}\|_{F}^{2}=\sum_{(i, j)}[\boldsymbol{W}]_{i j}^{2}$: Frobenius norm.
The solution is given as

$$
\widehat{\boldsymbol{W}}=\left(\boldsymbol{X} \boldsymbol{X}^{\top}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X} \boldsymbol{Y}
$$

We can use $\frac{\partial \operatorname{tr}(\boldsymbol{A B})}{\partial \boldsymbol{A}}=\boldsymbol{B}^{\top}$

Reduced rank regression

Using the dimensionality reduction, we can compress the information and use the information for regression.

Low-rank assumption

$$
\boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\top}
$$

$\boldsymbol{U} \in \mathbb{R}^{d \times k}, \boldsymbol{V} \in \mathbb{R}^{m \times k}$ (i.e., rank of \boldsymbol{W} is K and $k<\min (d, m)$) m output variables share K-dimensional latent space If we use the low-rank assumption (i.e., $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\top}$), we have

$$
\boldsymbol{y}=\left(\boldsymbol{U} \boldsymbol{V}^{\top}\right)^{\top} \boldsymbol{x}=\boldsymbol{V}^{\top}\left(\boldsymbol{U}^{\top} \boldsymbol{x}\right)
$$

where $\boldsymbol{U}^{\top} \boldsymbol{x} \in \mathbb{R}^{k}$.
Reduced rank regression: Sparsity in the dim of latent space

$$
\begin{array}{cl}
\min _{\boldsymbol{W}} & \left\|\boldsymbol{Y}-\boldsymbol{W}^{\top} \boldsymbol{X}\right\|_{F}^{2} \\
\text { s.t. } & \operatorname{rank}(\boldsymbol{W}) \leq k
\end{array}
$$

Sparsity in reduced rank regression

Parameter \boldsymbol{W} in the reduced rank regression $\boldsymbol{y}=\boldsymbol{W}^{\top} \boldsymbol{x}$ is dense in terms of matrix elements.
\boldsymbol{W} is sparse in terms of singular values $\rightarrow \boldsymbol{W}=\boldsymbol{U} \boldsymbol{V}^{\top}$ is low-rank. $\boldsymbol{U} \in \mathbb{R}^{d \times k}, \boldsymbol{V} \in \mathbb{R}^{m \times k}, k<\min (d, m)$

Rank is the number of non-zero singular values. That is, Rank is the ℓ_{0} norm of singular values:

$$
\operatorname{rank}(\boldsymbol{W})=\|\boldsymbol{\sigma}(\boldsymbol{W})\|_{0}
$$

where $\boldsymbol{\sigma}(\boldsymbol{W})=\left[\sigma_{1}(\boldsymbol{W}), \sigma_{2}(\boldsymbol{W}), \ldots, \sigma_{\min (d, m)}(\boldsymbol{W})\right]^{\top} \in \mathbb{R}^{\min (d, m)}$ and $\sigma_{i}(\boldsymbol{W})$ is the i-th singular value of \boldsymbol{W}.

$$
\|\boldsymbol{\sigma}\|_{0}=\sum_{\ell=1}^{d} \delta\left(\sigma_{i}\right), \quad \delta(\sigma)= \begin{cases}1 & (\sigma \neq 0) \\ 0 & (\sigma=0)\end{cases}
$$

Solution of reduced rank regression

The objective function to be minimized:

$$
\begin{aligned}
\left\|\boldsymbol{Y}-\boldsymbol{W}^{\top} \boldsymbol{X}\right\|_{F}^{2} & =\operatorname{tr}\left[\left(\boldsymbol{Y}-\boldsymbol{W}^{\top} \boldsymbol{X}\right)^{\top}\left(\boldsymbol{Y}-\boldsymbol{W}^{\top} \boldsymbol{X}\right)\right] \\
& =\operatorname{tr}\left(\boldsymbol{Y}^{\top} \boldsymbol{Y}-2 \boldsymbol{Y}^{\top} \boldsymbol{W}^{\top} \boldsymbol{X}+\boldsymbol{X}^{\top} \boldsymbol{W} \boldsymbol{W}^{\top} \boldsymbol{X}\right) \\
& =\operatorname{tr}\left(\boldsymbol{Y} \boldsymbol{Y}^{\top}-2 \boldsymbol{W}^{\top} \boldsymbol{X} \boldsymbol{Y}^{\top}+\boldsymbol{W}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{W}\right)
\end{aligned}
$$

where we used $\operatorname{tr}(\boldsymbol{A B})=\operatorname{tr}(\boldsymbol{B A})$.
We further decompose $\boldsymbol{X} \boldsymbol{X}^{\top}$ as

$$
\boldsymbol{X} \boldsymbol{X}^{\top}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top}
$$

Let us denote $\widetilde{\boldsymbol{W}}=\boldsymbol{\Lambda}^{1 / 2} \boldsymbol{U}^{\top} \boldsymbol{W}$. Then, we have

$$
\begin{aligned}
\left\|\boldsymbol{Y}-\boldsymbol{W}^{\top} \boldsymbol{X}\right\|_{F}^{2} & =\operatorname{tr}\left(\boldsymbol{Y} \boldsymbol{Y}^{\top}-2 \boldsymbol{W}^{\top} \boldsymbol{X} \boldsymbol{Y}^{\top}+\boldsymbol{W}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{W}\right) \\
& =\operatorname{tr}\left(\boldsymbol{Y} \boldsymbol{Y}^{\top}-2 \widetilde{\boldsymbol{W}}^{\top} \boldsymbol{\Lambda}^{-1 / 2} \boldsymbol{U}^{\top} \boldsymbol{X} \boldsymbol{Y}^{\top}+\widetilde{\boldsymbol{W}}^{\top} \widetilde{\boldsymbol{W}}\right) \\
& =\left\|\widetilde{\boldsymbol{W}}-\boldsymbol{\Lambda}^{-1 / 2} \boldsymbol{U}^{\top} \boldsymbol{X} \boldsymbol{Y}^{\top}\right\|_{F}^{2}+\text { Const. }
\end{aligned}
$$

Best rank-K approximation

Best rank- k approximation problem of matrix \boldsymbol{B} :

$$
\min _{\widehat{\boldsymbol{B}}}\|\boldsymbol{B}-\widehat{\boldsymbol{B}}\|_{F}^{2}, \text { s.t. } \operatorname{rank}(\widehat{\boldsymbol{B}}) \leq k
$$

The optimal solution is given as

$$
\widehat{\boldsymbol{B}}=\boldsymbol{U}_{k} \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{k}^{\top} .
$$

If $\widehat{\boldsymbol{B}}=\boldsymbol{O}$, we have

$$
\|\boldsymbol{B}\|_{F}^{2}=\sum_{i=1}^{\min (m, n)} \sigma_{i}^{2}
$$

Since $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{q} \geq 0$, the rank- k solution that minimizes the loss function is given as

$$
\|\boldsymbol{B}-\widehat{\boldsymbol{B}}\|_{F}^{2}=\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}-\boldsymbol{U} \boldsymbol{\Sigma}_{k} \boldsymbol{V}^{\top}\right\|_{F}^{2}=\sum_{i=k+1}^{\min (m, q)} \sigma_{i}^{2}
$$

Review of Singular value decomposition (SVD)

A matrix $\boldsymbol{B} \in \mathbb{R}^{m \times n}$ can be decomposed by

$$
\boldsymbol{B}=\boldsymbol{U} \overline{\boldsymbol{\Sigma}} \boldsymbol{V}^{\top}
$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}, \boldsymbol{V} \in \mathbb{R}^{n \times n}$,

$$
\overline{\boldsymbol{\Sigma}}=\left\{\begin{array}{cc}
{[\boldsymbol{\Sigma} \boldsymbol{\boldsymbol { \Sigma }}]} & (m<n) \\
\boldsymbol{\Sigma} & (m=n) \\
{\left[\begin{array}{l}
\boldsymbol{\Sigma} \\
\boldsymbol{O}
\end{array}\right]} & (m>n)
\end{array}, \quad \boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{q}\right) \in \mathbb{R}^{\boldsymbol{q} \times \boldsymbol{q}},\right.
$$

and $q=\min (m, n)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{q} \geq 0$ are singular values.

- \boldsymbol{U} is the eigenvectors of $\boldsymbol{B} \boldsymbol{B}^{\top}$ and \boldsymbol{V} is the eigenvectors of $\boldsymbol{B}^{\top} \boldsymbol{B}$, respectively.
- $\overline{\boldsymbol{\Sigma}} \overline{\boldsymbol{\Sigma}}^{\top}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{q}^{2}, 0, \ldots, 0\right) \in \mathbb{R}^{m \times m}$

Convex reduced rank regression

The optimization problem can be written as

$$
\min _{\boldsymbol{W} \in \mathbb{R}^{d \times m}} \sum_{i=1}^{n}\left\|\boldsymbol{y}_{i}-\boldsymbol{W}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2}+\lambda\|\boldsymbol{W}\|_{p}
$$

where $\|\boldsymbol{W}\|_{p}$ is the Schatten p-norm (all norm is convex).

$$
\|\boldsymbol{W}\|_{p}=\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(\boldsymbol{W})\right)^{1 / p}
$$

To make \boldsymbol{W} low-rank, the Schatten 1-norm is useful (Sum of singular values).

$$
\|\boldsymbol{W}\|_{1}=\sum_{i=1}^{\min \{n, m\}} \sigma_{i}(\boldsymbol{W})
$$

Optimization with ADMM

The optimization problem can be written as

$$
\min _{\boldsymbol{w}, \boldsymbol{M} \in \mathbb{R}^{d \times m}} \sum_{i=1}^{n}\left\|\boldsymbol{y}_{i}-\boldsymbol{W}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2}+\lambda\|\boldsymbol{M}\|_{1},
$$

$$
\text { s.t. } \quad W=M .
$$

The augumented Laglangian function is defined
$L(\boldsymbol{W}, \boldsymbol{M}, \boldsymbol{\Gamma})=\sum_{i=1}^{n}\left\|\boldsymbol{y}_{i}-\boldsymbol{W}^{\top} \boldsymbol{x}_{i}\right\|_{2}^{2}+\lambda\|\boldsymbol{M}\|_{1}+\frac{\rho}{2}\|\boldsymbol{W}-\boldsymbol{M}\|_{F}^{2}+\operatorname{tr}(\boldsymbol{\Gamma}(\boldsymbol{W}-\boldsymbol{M}))$,
where $\boldsymbol{\Gamma}$ is the Laglange multipliers. To solve this, we can use the following soft thresholding function:
$S_{\lambda / \rho}(\boldsymbol{M})=\underset{\boldsymbol{M}}{\operatorname{argmin}}\left(\frac{1}{2}\|\boldsymbol{W}-\boldsymbol{M}\|_{F}^{2}+\frac{\lambda}{\rho}\|\boldsymbol{M}\|_{1}\right)=\boldsymbol{U} \max (\boldsymbol{\Sigma}-\lambda / \rho, 0) \boldsymbol{V}^{\top}$,
where $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$.

Other dimensionality reduction methods

- Fisher Discriminant Analysis (FDA)
- Independent Component Analysis (ICA)
- Sufficient Dimensionality Reduction (SDR)
- Locally Linear Embedding (LLE)
- etc.

Summary of today's lecture

- Dimensionality reduction (Reduce the dimensionality of features).
- Feature selection is to interpret features, while dimensionality reduction is to reduce the dimensionality (for compression and visualization).
- Multi-variate Regression and reduced-rank regression
- Convex reduced-rank regression with ADMM
- Principal Component Analysis (PCA)
- Canonical Correlation Analysis (Multi-modal data)

Laurens van der Maaten and Geoffrey Hinton.
Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579-2605, 2008.

