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nMeasuring similarity between data sets is  
important for various problems.
nSimilarity between documents (ranking).
nSimilarity between access logs (illegal access detection)

nDivergence is useful for measuring (dis)similarity.
nKullback-Leibler divergence

nMutual information

2Research Motivation

Ratio of densities



nThe ratio of probability densities:

e.g., Kullback-Leibler divergence:

3Density Ratio

We mainly focus on 
continuous variable. 



Density-Ratio Applications

nChange point detection
nTransfer learning

nSpeaker identification
nHuman pose estimation
nAction recognition

nDimensionality reduction
nOutlier detection
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Direct Density-Ratio Estimation 5

Knowing densities

nNaïve approach: Separately estimate                             
and take their ratio ⇒ poor

nVapnik said: When solving a problem of interest,
one should not solve a more general problems as an 
intermediate step (Vapnik principle)

⇒Estimating densities is more general than 
estimating  a density ratio

n Following the Vapnik principle, methods which 
directly estimate the density ratio without density 
estimation were proposed.

Knowing ratio

Sugiyama, Suzuki, & Kanamori (2012)



Density-Ratio after 2016

nWe developed several density-ratio based 
approaches (mostly kernel based approaches) 
by 2012.

nAfter 2016
nGenerative Adversarial Networks (GAN)

nGenerative Adversarial Nets from a Density Ratio 
Estimation Perspective (arXiv)

nLearning in implicit generative models (arXiv)

nApproximate Bayesian Computation (ABC)
nLikelihood-free inference by ratio estimation

nMutual Information estimation
nMINE: Mutual Information Neural Estimation
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nDensity ratio

can diverge to infinity under a rather simple setting.

7Research Motivation

Cortes et al. (NIPS 2010)



nRelative density-ratio:

Relative density-ratio is bounded above by        ! 
nRelative Pearson divergence:

8Relative Density-Ratio
Yamada et al. (NIPS 2011)



nData:
nKey idea: Fit a density-ratio model                to 

the true density-ratio           under squared-loss.

9Relative unconstrained Least-Squares 
Importance Fitting (RuLSIF)

Constant



nKernel model:

nCost function with kernel model:

10RuLSIF: Model



nOptimization problem:

nSolution (analytically obtained):

nCross-validation is possible.
nIf            , RuLSIF is equivalent to uLSIF.   

11RuLSIF: Solution

Regularizer

Kanamori et al. (JMLR 2009)



Relative PE Divergence Estimators
nRelative PE divergence:

nRelative PE divergence estimators:
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Toy Experiments: RuLSIF 13

: 0.2865 :-0.0001



Change Point Detection
nChange-point detection based on PE:
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Liu, Yamada, Collier & Sugiyama (Neural Networks to appear)



Covariate Shift Adaptation 
(Transfer Learning)

nKey idea: Reduce generalization error in test data 
set (Not in training dataset)!

nCovariate shift adaptation setup
nTraining data:
nTest data:
nKey idea: Learning a function so that error in test data is 

minimized under the assumption: 
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Shimodaira (JSPI, 2000)



Exponentially-flattened IW (EIW) 
empirical error minimization

nFlatten the importance weight by

à empirical error minimization.    
à Intermediate 
à IW empirical error minimization

Setting      to                  is practically useful for stabilizing 
the covariate shift adaptation, even though it cannot 
give an unbiased model under covariate shift.
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Shimodaira (JSPI 2000)

It still needs importance weight estimation L



Relative importance-weighted (RIW) 
empirical error minimization

nUse relative importance weight (RIW):

controls the adaptiveness to the test 
distribution. 

nRIW-empirical error minimization:

works well in practice.  
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Yamada et al.  (NIPS 2011)



Toy Example

nPredicted output by IWKR (IWKR = RIW-LS)
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RIW method gives smaller error and varianceJ

Yamada et al.  (NIPS 2011)



Application1: 3D Pose Estimation
nGiven: large database of image-pose pairs

n Inference: Predict human pose of 
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e.g., Kernel Regression

Test
image

HoG

Yamada, Sigal, & Raptis (ECCV 2012)



HumanEva-I Experiments: Settings

nExperimental Settings:
nSelection bias (C1-3): All camera data is used for 

training and testing.
nSubject transfer (C1): Test subject is not included 

in training phase. 
n Error metric:

: True pose
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Sigal et al.  (TR 2006)



Application2: 
Human Activity Recognition

nHuman Activity Recognition by accelerometer 
nWalk, run, bicycle riding, and train riding 

classification by accelerometer sensor in iPod touch
nTraining: 20 subjects data set
nTest: A new  subject not included in the training set

Relative importance weight performs wellJ
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Yamada et al.(NIPS 2011)



Conclusion

nRelative Density-Ratio
Relative Density-ratio is promising for various types 
of applications.
nChange-point detection
nTransfer learning
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