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Research Motivation

Measuring similarity between data sets is
important for various problems.

B Similarity between documents (ranking).

B Similarity between access logs (illegal access detection)
Divergence is useful for measuring (dis)similarity.
M Kullback-Leibler divergence
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Density Ratio
The ratio of probability densities:

p(x) 2

x € R 1
We mainly focus on

continuous variable. 0

e.g., Kullback-Leibler divergence:

KL = /p’(a:) log 5/((2))(1:1:




Density-Ratio Applications

Change point detection 20)

107

Transfer learning

0

M Speaker identification

-107

B Human pose estimation ‘Change Poin

-20 - ' '
0 500 1000 1500 2000

B Action recognition
1.5

Training

Dimensionality reduction

Outlier detection




Direct Density-Ratio Estimation  °

Sugiyama, Suzuki, & Kanamori (2012)
Naive approach: Separately estimate p(x), p'(x)
and take their ratio = poor

Vapnik said: When solving a problem of interest,
one should not solve a more general problems as an
intermediate step (Vapnik principle)

Knowing densities > Knowing ratio
plx
N e o)

P ()
=Estimating densities is more general than
estimating a density ratio

Following the Vapnik principle, methods which
directly estimate the density ratio without density
estimation were proposed.




Density-Ratio after 2016

We developed several density-ratio based

approaches (mostly kernel based approaches)
by 2012.

After 2016

B Generative Adversarial Networks (GAN)

Generative Adversarial Nets from a Density Ratio
Estimation Perspective (arXiv)

Learning in implicit generative models (arXiv)
B Approximate Bayesian Computation (ABC)

Likelihood-free inference by ratio estimation
B Mutual Information estimation

MINE: Mutual Information Neural Estimation



Research Motivation /

Density ratio

can diverge to infinity under a rather simple setting.
Cortes et al. (NIPS 2010)
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p(x) = N(1,0.5%)
p(x) = N(2,0.25%)
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Relative Density-Ratio

Yamada et al. (NIPS 2011)

' : : .70.5()
Relative density-ratio: 1, (@)
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Relative density-ratio is bounded above by 1/a)

Relative Pearson divergence:
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Relative unconstrained Least-Squares °
Importance Fitting (RuLSIF)

Data: {wi}i, "~ plx) {wi}l, "~ /(=)

Key idea: Fit a density-ratio model r(x;80) to

the true density-ratio 7.(x) under squared-loss.
¢o(x) = ap(z) + (1 — a)p'(x)
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RuLSIF: Model

Kernel model:

r(z;0) = 0K(x, @) =6 k(z)

r — ' 2
K(wawl):exp (_H 202 H ) O'2>O

Cost function with kernel model:
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6 = argmin
OcR”

Solution (analytically obtained):

RUuLSIF: Solution

Optimization problem:

1
bHTHH _hTo 1+

6 =(H+\,) 'h

ro(z) = 0" k(x)

M Cross-validation is possible.

g

Regularizer
A>0

B|f o = 0, RuLSIF is equivalent to uLSIF. kanamori et al. (JMLR 2009)

7“0(%) =

p(x)
P (x)




Relative PE Divergence Estimators '°

Relative PE divergence:

PE. — % / (ro(@) — 1)7 o (2)da

1

1

= 5/7404(513>p<w)dw _% (B)

Relative PE divergence estimators:
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Toy Experiments: RuLSIF 13

PE, - : 0.2865 PE, -:-0.0001



Change Point Detection 14

Liu, Yamada, Collier & Sugiyama (Neural Networks to appear)

Change-point detection based on PE:

PE, < 7 (No abrupt change)
PE, > 7 (Abrupt change)
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Covariate Shift Adaptation 15

(TranSfer I'earning)Shimodaira (JSPI, 2000)

Key idea: Reduce generalization erro1r5|n test data

set (Not in training dataset)! |

Covariate shift adaptation setup O'z'

B Training data: {(z!", y)}™ "% pe(x, y) 05 com

B Test data: {z!°}7 "< pio(z) _‘11 0o 1 2 3

Ptr (aj) 7£ Pte (ZB)

M Key idea: Learning a function so that error in test data is
minimized under the assumption: pi.(y|x) = pw.(y|x)

/ / l0ss(Y, fw(T))pre(T, y)dxdy

/ / loss(Y, f 4 E ;ptr(w y)dxdy




Exponentially-flattened IW (EIW) 16

empirical error minimization
Shimodaira (JSPI1 2000)

Flatten the importance weight by 0 <7 <1

i |7, 3o (1) ot et

i—1 ptr(mi

T = —> empirical error minimization.
0 <7 <1 =2 Intermediate
=1 -2 IW empirical error minimization

Setting 7 to 0 < 7 < 1 is practically useful for stabilizing
the covariate shift adaptation, even though it cannot
give an unbiased model under covariate shift.

It still needs importance weight estimation ®



Relative importance-weighted (RIW) 1/
empirical error minimization

Yamada et al. (NIPS 2011)
Use relative importance weight (RIW):

) Ly ()

1 — a)pre(@;’) + apu(zy’)  1—« Per (5

0 < a < 1 controls the adaptiveness to the test
distribution.

RIW-empirical error minimization:

Nty

. i pte(wgr) 0SS tr w‘gr
jer {mr 2 ((1 — a)pre(@f") + Ozpm«(fv‘ér)) oSl e ))}

1=1
a = 0.5 works well in practice.




Toy Example 18

Yamada et al. (NIPS 2011)

Predicted output by IWKR (IWKR = RIW-LS)

1.5} \“ o Training T ---EIW-LS
. x Test —RIW-LS
| o —TRUE 0.1
-~ --=EIW-LS (1 = 0.5) '
== RIW-LS (o = 0.9)
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Test Error
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RIW method gives smaller error and variance®©



Application1: 3D Pose Estimation '~

Yamada, Sigal, & Raptis (ECCV 2012)
Given: Iarge database of image-pose pairs

ntr Zo

r 1.d.
z?yz)leptrwy

Bidi)) i

Nte 0-1.d.

Inference: Predict human pose of {z!°} "~ pio(x

Test
image

y=flz)+e

e.g., Kernel Regression



HumanEva-l Experiments: Settings *"

Sigal et al. (TR 2006) 1™ :
Experimental Settings: &!Li

B Selection bias (C1-3): All camera data is used for
training and testing.

B Subject transfer (C1): Test subject is not included
in training phase.

Error metric:

1 S\ *{11
Errorpese(©,y") = 5= > 19" — ™|

y* € R": True pose



Application2: -1

Human Activity Recognition

.. o Yamada et al.(NIPS 2011)
Human Activity Recognition by accelerometer

B \Walk, run, bicycle riding, and train riding
classification by accelerometer sensor in iPod touch

B Training: 20 subjects data set
B Test: A new subject not included in the training set

Task KLR RIW-KLR EIW-KLR IW-KLR
(=0, 7=0) (¢ = 0.5) (t = 0.5) (a=1,17=1)
Walks vs. run 0.803 (0.082) | 0.889(0.035) | 0.882(0.039) | 0.882 (0.035)
Walks vs. bicycle 0.880 (0.025) | 0.892(0.035) | 0.867 (0.054) | 0.854 (0.070)
Walks vs. train 0.085 (0.017) | 0.992(0.008) | 0.989 (0.011) | 0.983 (0.021)

Relative importance weight performs well©



Conclusion

Relative Density-Ratio

Relative Density-ratio is promising for various types
of applications.

B Change-point detection
M Transfer learning



