Machine Learning for IT company (Matrix completion & Active Learning)

Makoto Yamada myamada@i.Kyoto-u.ac.jp

Types of Data

- Click data
 - News (Yahoo, Google)
 - E-commerce (Yahoo Auction, eBay, Alibaba, Amazon)
 - Ad recommendation (Google, Criteo, Cyber Agent)
 - Video sharing (Youtube, 二□二□, SnapChat)
 - Image sharing (Facebook, Flickr, Picasa)
- Text data (web page, item description, etc.)

YAHOO! GBDT (Decision Tree)

3

× 0

Biog

Sign in

This rare technique is making Japanese investors a fortune in 2016... France Deep Dive

Polities Megyn Kelly Believes President Donald Trump Could Be 'Dangerous'

and Malla in an and an an all and it as from the same relation while with Provide

IBIS 2016		Q	11
ibis 2016 ibis 2016 ripley ibis 2016 conference ibis 2016 las vegas ripley ibis 2016	Query auto completion GBDT (Decision Tree) CRF		

IBIS 2016. The premier BusinessObjects training and information exchange of the year hosted by InfoSol.

IBIS Academy 2016 - HOME

www.ibisacademy.com ~ IBIS Academy Attendees; IBIS Conference 2016; History of the IBIS Academy; Dates to Remember. Dates to Remember. 23 Oct Registration Opens: Partners. Web ranking

Ibis Demo Tour 2016 | Buy/Try

GBDT (Decision Tree)

www.ibiscycles.com/buytry/ibis_demo_tour ~

Ibis Demo Tour 2016 | Buy/Try. Ibis Cycles Inc. designs, develops, sources, distributes, and markets the best bicycles and cycling related products in the world.

IBIS 2016 - Image Results

High-dimensional Sparse data

- Dimensionality and sample size are both large!
 - Text data
 - Click data
 - Link data

Text classification, Sentiment analysis: Logistic regression

Ad recommendation, item recomendation: Matrix completion

Example of data format

- Movielens data (1M)
- 1::1193::5::978300760
- 1::661::3::978302109
- 1::914::3::978301968
- 1::3408::4::978300275
- 1::2355::5::978824291
- 1::1197::3::978302268
- 1::1287::5::978302039
- 1::2804::5::978300719
- 1::594::4::978302268
- 1::919::4::978301368
- 1::595::5::978824268

Collaborative filtering

• Recommending items using user click information (Amazon, Netflix, etc.)

 $oldsymbol{A}$ is a sparse matrix

Singular Value Decomposition

• Fill un-observed element by 0 and do SVD.

$$A = U \Sigma V^{
m e}$$

 Use low-rankness to estimate un-observed elements

$$\widehat{oldsymbol{A}} = oldsymbol{U}_k oldsymbol{\Sigma}_k oldsymbol{V}_k^ op$$

 This approach makes un-observed elements as 0. However, those elements are simply not observed (not zero!)

Alternating Least Squares (ALS)

• Fitting only observed entries.

$$\min_{\boldsymbol{U},\boldsymbol{V}} \sum_{(i,j)\in\Omega} (a_{ij} - \boldsymbol{u}_i^{\top} \boldsymbol{v}_j)^2 + \lambda_1 \|\boldsymbol{U}\|_F^2 + \lambda_2 \|\boldsymbol{V}\|_F^2$$

• U and V can be alternatingly optimized.

$$oldsymbol{u}_i = \left(\sum_{(i,j)\in\Omega} oldsymbol{v}_j oldsymbol{v}_j^{ op} + \lambda_1 oldsymbol{I}
ight)^{-1} \sum_{\substack{(i,j)\in\Omega}} a_{ij} oldsymbol{v}_j \ oldsymbol{v}_j = \left(\sum_{(i,j)\in\Omega} oldsymbol{u}_i oldsymbol{u}_i^{ op} + \lambda_2 oldsymbol{I}
ight)^{-1} \sum_{\substack{(i,j)\in\Omega}} a_{ij} oldsymbol{u}_i$$

Advanced topic: Cold start problems

Singh, A. & Gordon, G, KDD 2008

 Cold start: Matrix A is very sparse. Some row (user) or column (item) can be completely missing.

Tumblr Blog recommendation

• Which blog we should recommend to users?

News recommendation

- News recommendation
 - #of users ~180,000
 - #of articles \sim 750
 - #of categories 34

Method

SMF

CMF–Hazans

- #of Rating(1.4 million)

Factorization Machine

Rendle, ICDM 2010

- Generalized version of matrix completion
 - Matrix completion + User bias + Item bias
 - We can easily add user information
- Idea (super simple)
 - Solve matrix completion problems by regression
 - (i,j)-th rating input and output can be written as

$$oldsymbol{x}_i = [\overbrace{0 \cdots 0}^{|U|} \underbrace{1}_{k- ext{th user}} \underbrace{0 \cdots 0}_{k- ext{th user}} \overbrace{0 \cdots 0}^{|I|} \underbrace{0 \cdots 0}_{k'- ext{th item}} \underbrace{0 \cdots 0}_{k'- ext{th item}}]^{ op} \in \mathbb{R}^d,$$

 $y_i = [oldsymbol{A}]_{k,k'}.$

Factorization Machine

Rendle, ICDM 2010

Regression model

$$f(\boldsymbol{x}; \boldsymbol{w}, \boldsymbol{G}) = w_0 + \boldsymbol{w}_0^\top \boldsymbol{x} + \sum_{\ell=1}^d \sum_{\ell'=\ell+1}^d \boldsymbol{g}_\ell^\top \boldsymbol{g}_{\ell'} x_\ell x_{\ell'},$$

FM is equivalent to matrix completion

$$\widehat{m{A}}_{k,k'} = w_0 + [m{w}_0]_k + [m{w}_0]_{|U|+k'} + m{g}_k^{ op}m{g}_{|U|+k'},$$

 We can also handle the cold start problems by simply concatenating user and item information.

Factorization Machine

• Optimization problem:

$$\min_{w_0, \boldsymbol{w}, \boldsymbol{G}} \sum_{i=1}^{\infty} (y_i - f(\boldsymbol{x}_i; w_0, \boldsymbol{w}_0, \boldsymbol{G}))^2 \\ + \lambda_1 \|w_0\|_2^2 + \lambda_2 \|\boldsymbol{w}_0\|_2^2 + \lambda_3 \|\boldsymbol{G}\|_F^2,$$

- Alternating Least Squares, SGD, Markov Chain Monte Carlo (MCMC).
- Convex optimization version (Blondel, ECML 2015, Yamada KDD 2017)

Factorization Machine Usage

- URL: <u>http://www.libfm.org/</u>
- Movielens data: <u>https://grouplens.org/datasets/movielens/</u>
- ./triple_format_to_libfm.pl -in ml-1m/ratings.dat
 -target 2 -delete_column 3 -separator "::"
- ./libFM -task r -train ratings.dat.libfm -test ratings.dat.libfm -dim '1,1,8'

Low dimensionality & large sample

- The number of samples is larger than that of dimension (n >> d)
 - Images
 - Speech
 - User related data

Image and speech recognition: Deep Learning Spam detection, Web ranking: GBDT (xgboost), Logistic regression

Yahoo Auction

Auction Fraud Detection

- Example of frauds
 - Selling fake items
 - Do not send items
 - Do a big frauds after gathering trust scores.
 - Etc.
- Detecting fraud is a very important to make users happy!
- Challenge
 - The fraud types changes over season
 - Active learning, transfer learning, etc.
 - Big data (the number of samples can be hundred million of items)

Formulation

Classification problem (Fraud or non-Fraud)
 — Build a classifier using a labeled data

	Gender	Age	 Locatio n	Label
User 1	Male	25	 Tokyo	+1
User 2	Female	20	 Kyoto	-1
User n	Male	36	 Tokyo	-1

Fraud user

Supervised Learning (review)

- Input and output: $oldsymbol{x} \in \mathbb{R}^d, \,\, y \in \mathbb{R}$
- Training samples: $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}, y)$
- Goal: Training classifier from the training samples.
- Model (Linear model) $f(\boldsymbol{x}; \boldsymbol{w}) = w_1 x_1 + w_2 + x_2 + \dots w_d x_d = \boldsymbol{w}^\top \boldsymbol{x}$
- Model parameter

$$\boldsymbol{w} = [w_1, w_2, \dots, w_d]^\top \in \mathbb{R}^d$$

Prediction

1

How to prediction (User probability)

$$p(y = +1|\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})}$$
$$p(y = -1|\boldsymbol{x}) = \frac{\exp(-\boldsymbol{w}^{\top}\boldsymbol{x})}{1 + \exp(-\boldsymbol{w}^{\top}\boldsymbol{x})}$$

• The probability should be sum to 1.

$$p(y = +1|x) + p(y = -1|x) = \frac{1 + \exp(-w^{\top}x)}{1 + \exp(-w^{\top}x)} = 1$$

Parameter training (Review)

- We train model parameter $oldsymbol{w}$ from data
- How to estimate?
 - The positive class probability is high if the data is normal, and the negative class probability is high if the data is fraud.
- Likelihood function: $L(\boldsymbol{w}) = \prod_{i=1}^{n} p(y_i | \boldsymbol{x}_i; \boldsymbol{w})$
- Log likelihood function:

$$L(\boldsymbol{w}) = \log \prod_{i=1}^{n} p(y_i | \boldsymbol{x}_i; \boldsymbol{w}) = \sum_{i=1}^{n} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{w})$$

Parameter training

• Optimization

$$\max_{\boldsymbol{w}} \quad L(\boldsymbol{w}) \to \min_{\boldsymbol{w}} - \sum_{i=1}^{n} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{w})$$

• We can use a gradient descent.

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta \nabla_{\boldsymbol{w}} (-L(\boldsymbol{w}))$$

Fraud Detection

• How to find fraud users?

Practical issues

- Various types of frauds
 - Selling fake items
 - Do not send items
 - Do a big frauds after gathering trust scores.
 - Etc.
- Detecting fraud is a very important to make users happy!
- Challenge
 - The fraud types changes over season
 - Active learning, transfer learning, etc.
 - Big data (the number of samples can be hundred million of items)
- Can we automatically erase user account?

One solution: Using Active learning

- Key idea: We ask human editor to judge fraud or not → Feedback the result to machine learning model (Active learning)
- Use supervised learning (GBDT, xgboost)
 - Semi-supervised and unsupervised method tends not to work for real problems.
- Feature engineering is super important!

Results

Detection results (rule based approach is a baseline)

