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Review: Supervised Learning

Problem formulation of supervised learning.

Input vector: x = (x1, x2, . . . , xd)> ∈ Rd

Output: y ∈ R

(x i , yi )
i.i.d.∼ p(x , y)

Labeled data: {(x1, y1), (x2, y2), . . . , (xn, yn)}
Model: f (x ; w) = w>x . (Linear model)

Risk: R(w) =
∫∫

loss(y , f (x ; w))p(x , y)dxdy

Empirical Risk: Remp(w) = 1
n

∑n
i=1 loss(yi , f (x i ; w))

Empirical Risk Minimization (ERM): ŵ = argminw Remp(w)
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Semi-Supervised Learning

Problem formulation of semi-supervised learning.

(x i , yi )
i.i.d.∼ p(x , y)

x i
i.i.d.∼ p(x)

Labeled data: {(x1, y1), (x2, y2), . . . , (xn, yn)}
Unlabeled data: {xn+1, xn+2, . . . , xn+m}
Usually n� m and n is small

If n is large, it is good to use supervised learning

Semi-supervised learning:

We have both labeled and unlabeled samples.

Semi-supervised learning uses both labeled and unlabeled samples.

The unlabeled samples follow the same distribution of the marginal
distribution of p(x , y)
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Role of unlabeled data

Data generation process

Input x is generated by a distribution with probability density p(x)

Output y for x is generated by conditional distribution with
probability density p(y |x).

Unlabeled data can be used for capturing p(x)

input data distribution, input space metric, or better representation.
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Semi-supervised learning problem: Learning with labeled
and unlabeled data

We have both labeled and unlabeled instances (samples):

Labeled data: {(x1, y1), (x2, y2), . . . , (xn, yn)}
Unlabeled data: {xn+1, xn+2, . . . , xn+m}

Estimate a deterministic mapping from x to y .

Regression

Classification
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Typical approaches of semi-supervised learning

Weighted maximum likelihood estimation

Graph-based learning

self-training

Clustering

Generative models
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Weighted maximum likelihood

The original goal of ML estimation is to maximize:

Ex ,y [log p(y |x)] =

∫∫
logP(y |x ; w)p(x)p(y |x)dxdy ,

≈ 1

n

n∑
i=1

log(P(yi |x i ; w))

where P(y |x ; w) is a model. Each training instance is equally weighted.

Note, ML is equivalent to maximize the negative log-likelihood function:

L(w) = log

(
n∏

i=1

P(yi |x i ; w)

)

∝ 1

n

n∑
i=1

log(P(yi |x i ; w))
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Weighted maximum likelihood

Weighted maximum likelihood:

max
w

n∑
i=1

p(x i ) log(P(yi |x i ; w))

Each training data instance is weighted by p(x i ).

p(x) is estimated by using unlabeled data.

Denser areas are largely weighted

Training a classifier focusing on the dense areas

1 KYOTO UNIVERSITY

§Weighted maximum likelihood:
–Each training data instance is weighted according to !(#)
–Dense areas are largely weighted

–Training a classifier focusing on the dense areas
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Graph-based method

Basic idea: construct a graph capturing the intrinsic shape of input
space, and make prediction on the graph.

Assumption: Data lie on a manifold in the feature space

The graph represent adjacency relationships among data

K-nearest neighbor graph (e.g., Aij = 0, 1)

Edge-weighted graph with e.g., Aij = exp(−‖x i − x j‖22)
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Label propagation

Basic idea: Adjacent instances tend to have the same label

Transductive setting (we have test instances)

min
f ∈Rn

n∑
i=1

(fi − yi )
2 + λ

n+m∑
i=1

n+m∑
j=1

Aij(fi − fj)
2,

where λ > 0 is the regularization parameter.

1st term: (squared) loss function to fit to labeled data.

2nd term: regularization function to make adjacent nodes to have
similar predictions.

1 KYOTO UNIVERSITY

Label propagation: 
Simple graph-based method

!"
prediction:

labeled data unlabeled data
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Illustrative example of label propagation

Predict if people are infected by some disease

Test results are known for some people

infections spread over social networks

1 KYOTO UNIVERSITY

§ Predict if people are infected by some disease
–Test results are known for some people
–Infections spread over social networks

Illustrative example of label propagation: 
Infection prediction on social network
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Transfer Learning

Supervised Learning:

Training {(x tr
i , y

tr
i )}ni=1

i.i.d.∼ ptr(x , y)

Test (x te, y te)
i.i.d.∼ pte(x , y) (Not observed during training)

ptr = pte (Training and test distributions are same)

Semi-supervised Learning:

Training {(x tr
i , y

tr
i )}ni=1

i.i.d.∼ ptr(x , y), {x tr
i }

n+m
i=n+1

i.i.d.∼ ptr(x).

Test (x te, y te)
i.i.d.∼ pte(x , y) (Not observed during training)

ptr = pte (Training and test distributions are same)

If ptr 6= pte, supervised method and semi-supervised method do not
perform well. A possible answer would be Transfer Learning!
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Types of Transfer Learning

Key idea: Reduce generalization error in test data. (not in training data)

Unsupervised transfer learning

{(x tr
i , y

tr
i )}ntri=1

i.i.d.∼ ptr(x , y),

{x te
j }

nte
j=1

i.i.d.∼ pte(x), ntr � nte

Supervised transfer learning

{(x tr
i , y

tr
i )}ntri=1

i.i.d.∼ ptr(x , y)

{(x te
j , y

te
j )}ntej=1

i.i.d.∼ pte(x , y), nte � ntr

Semi-supervised transfer learning

{(x tr
i , y

tr
i )}ntri=1

i.i.d.∼ ptr(x , y)

{(x te
j , y

te
j )}ntej=1

i.i.d.∼ pte(x , y), nte � ntr

{x te
j }

nte+n′te
j=nte+1

i.i.d.∼ pte(x), ntr � nte
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Unsupervised Transfer Learning

Key idea: We assume

It does not need to have test label

Need some assumption

Standard approaches

Importance weighted method (e.g., Covariate shift adaptation)

Subspace based method.
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Unsupervised Transfer Learning: Covariate shift adaptation

Problem setup:

{(x tr
i , y

tr
i )}ntri=1

i.i.d.∼ ptr(x , y),

{x te
j }

nte
j=1

i.i.d.∼ pte(x), ntr � nte

Key idea: Learning a function so that error in test data is minimized under
the assumption ptr(y |x) = pte(y |x)

Density-Ratio Applications (1)
nChange point detection
nTransfer learning

nSpeaker identification
nHuman pose estimation
nAction recognition

nDimensionality reduction
nOutlier detection

1

Yamada et al. (NIPS 2011)

Liu, Yamada, Collier, & Sugiyama(NN 2012)

Yamada, Sigal, & Raptis (ECCV 2012)

Yamada, Sugiyama, & Matsui (SP 2010)
Change Point

Simodaira (JSPI 2000)

Yamada & Sugiyama (AAAI 2012)

Training

Test

Yamada et al. (NIPS 2011)
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Unsupervised Transfer Learning

The risk can be written as

J(w) =

∫∫
L(y , f (x))pte(x , y)dxdy

=

∫∫
L(y , f (x))

pte(x , y)

ptr(x , y)
ptr(x , y)dxdy

=

∫∫
L(y , f (x))

pte(y |x)pte(x)

ptr(y |x)ptr(x)
ptr(y , x)dxdy

=

∫∫
L(y , f (x))

pte(x)

ptr(x)
ptr(y , x)dxdy

≈ 1

ntr

ntr∑
i=1

L(y tri , f (x tr
i ))

pte(x tr
i )

ptr(x tr
i )

Actually, it is a weighted maximum likelihood problem. Note
pte(xtr

i )

ptr(xtr
i )

is a

ratio of probability densities (density-ratio)
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Unsupervised Transfer Learning: Covariate shift adaptation

Exponentially-flattened Importance weighted empirical risk minimization
(IW-ERM):

min
f ∈F

1

ntr

ntr∑
i=1

L(y tri , f (x tr
i ))

(
pte(x tr

i )

ptr(x tr
i )

)τ
where 0 ≤ τ ≤ 1 is a tuning parameter for stabilizing the covariate shift
adaptation.

τ = 0→ ERM

0 < τ < 1→ Intermediate

τ = 1 IW-ERM

Setting τ to 0 < τ < 1 is practically useful.

Makoto Yamada myamada@i.kyoto-u.ac.jp (Kyoto University)Semi-supervised Learning July/8/2019 17 / 29



Unsupervised Transfer Learning: Covariate shift adaptation

Relative Importance weighted empirical risk minimization (RIW-ERM):

min
f ∈F

1

ntr

ntr∑
i=1

L(y tri , f (x tr
i ))

pte(x tr
i )

(1− α)pte(x tr
i ) + αptr(x tr

i )

where 0 ≤ τ ≤ 1 is a tuning parameter for stabilizing the covariate shift
adaptation.

α = 0→ ERM

0 < α < 1→ Intermediate

α = 1 IW-ERM

rα(x) =
pte(x)

(1− α)ptr(x) + αptr(x)
<

1

1− α

The density ratio is bounded above by 1/(1− α).
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Unsupervised Transfer Learning: Importance Weighted
Least Squares

The importance weighted least squares problem can be written as

min
w

J(w) =
1

ntr

ntr∑
i=1

r(x tr
i )‖y tri −w>x tr

i ‖22,

where r(x) is a weight function (e.g., density-ratio).

Take the derivative w.r.t. w and equating it to zero.

∂J(w)

∂w
= − 2

ntr

ntr∑
i=1

r(x tr
i )(y tri −w>x tr

i )x tr
i = 0

ŵ =

(
ntr∑
i=1

r(x tr
i )x tr

i x tr
i
>
)−1 ntr∑

i=1

r(x tr
i )y tri x tr

i
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Covariate Shift Adaptation: Synthetic Example

Comparison of EIW-LS and RIW-LS:

Toy Example

nPredicted output by IWKR (IWKR = RIW-LS)

3

RIW method gives smaller error and varianceJ

Yamada et al.  (NIPS 2011)
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Supervised Transfer Learning

Problem formulation:

{(x tr
i , y

tr
i )}ntri=1

i.i.d.∼ ptr(x , y)

{(x te
j , y

te
j )}ntej=1

i.i.d.∼ pte(x , y), nte � ntr

We assume to have a large number of training samples and a small
number of paired target labeled samples.

Frustratingly easy domain adaptation

Multi-task Learning

Fine-tuning (Deep Learning)
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Supervised Transfer Learning: Importance Weight

Naive approach: Pooling training and test samples

J(w) =

∫∫
loss(y , f (x ; w))pte(x , y)dxdy

= α

∫∫
loss(y , f (x ; w))ptr(x , y)dxdy

+ (1− α)

∫∫
loss(y , f (x ; w))pte(x , y)dxdy

' α

ntr

ntr∑
i=1

loss(y tri , f (x tr
i ; w)) +

(1− α)

nte

nte∑
j=1

loss(y tej , f (x te
j ; w)),

where 0 ≤ α ≤ 1 is a tuning parameter to control trade off between source
and target errors.
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Supervised Transfer Learning: Multi-task Learning

Problem formulation:

Task1:{(x (1)
i , y

(1)
i )}n1i=1

i.i.d.∼ p1(x , y)

Task2:{(x (2)
j , y

(2)
j )}n2j=1

i.i.d.∼ p2(x , y)

...

TaskM:{(x (M)
j , y

(M)
j )}nMj=1

i.i.d.∼ pM(x , y)

Linear Models:
f1(x (1)) = w>1 x (1), f2(x (2)) = w>2 x (2), . . . , fM(x (M)) = w>Mx (M)

min
w1,...,wM

M∑
m=1

1

nm

nm∑
i=1

loss(y
(m)
i , fm(x (m))) + λR(w1, . . . ,wM).

where R(w1, . . . ,wM) is a regularizer.

λ = 0 : Independently optimize ws

λ > 0 : We share some information among models.
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Supervised Transfer Learning: Multi-task Learning

Multi-task learning optimization (Graph-Laplacian).

min
w1,...,wM

M∑
m=1

1

nm

nm∑
i=1

loss(y
(m)
i , fm(x (m)

i )) + λ

M∑
m=1

M∑
m′=1

rm,m′‖wm −wm′‖22.

where rm,m′ ≥ 0 is a model parameter (similarity between models). If
rm,m′ > 0, we make wm and wm′ close.
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Supervised Transfer Learning: Multi-task Learning

Other approach: Explicitly including shared parameter. We decompose
wm = w0 + vm

That is

f1(x (1)) = (w0 + v1)>x (1),

f2(x (2)) = (w0 + v2)>x (2),

. . .

fM(x (M)) = (w0 + vM)>x (M)

where w0 is a common factor for all models.

For squared-loss, we can write the problem as

min
w1,...,wM

1

2

M∑
m=1

1

nm

nm∑
i=1

(
y
(m)
i − (w0+vm)>x (m)

i

)2
+λ(‖w0‖22+

M∑
m=1

‖vm‖22)
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Supervised Transfer Learning: Frustratingly easy domain
adaptation

A frustratingly easy feature augmentation approach:

z tr = (x tr> x tr> 0d
>)>,

z te = (x te> 0d
> x te>)>,

The inner product of z in the same domain is give as

z tr>z tr = 2x tr>x tr,

z te>z te = 2x te>x te,

while we have

z tr>z te = x tr>x tr, .

Then, we train a supervised learning method with the transformed vectors
z . Super easy!!!!
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Supervised Transfer Learning: Multi-task Learning

Actually, supervised transfer learning can be regarded as a two-task
learning problem. First task is for training and second task is for test.
Let us denote the transformed vectors as

z tr = (x tr> x tr> 0d
>)> ∈ R3d ,

z te = (x te> 0d
> x te>)> ∈ R3d ,

where 0d ∈ Rd is the vector whose elements are all zero.
And, we consider a linear regression problem: The model parameter of the
linear model can be written as

w = (w>0 v1
> v2

>)> ∈ R3d
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Supervised Transfer Learning: Multi-task Learning

J(w) =
1

2ntr

ntr∑
i=1

‖y tri − z tr
i
>w‖22 +

1

2nte

nte∑
i=1

‖y tei − z te
i
>w‖22 + λ‖w‖22

=
1

2

M∑
m=1

1

nm

nm∑
i=1

(
y
(m)
i − (w0+vm)>x (m)

i

)2
+λ(‖w0‖22+

M∑
m=1

‖vm‖22),

where we use

w>z tr = (w0 + v1)>x tr, w>z te = (w0 + v2)>x te

x tr = x (1), x te = x (2),

‖w‖22 = ‖w0‖22 +
2∑

m=1

‖vm‖22.

Frustratingly easy domain adaptation is a multi-task learning.
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Summary

Semi-supervised learning. Use unlabeled samples and assume the data
distribution of unlabeled data is same as training.

Weighted Maximum Likelihood, Graph-based method.

Transfer Learning. Use samples from test data. Training and test
distributions are different.

Covariate shift adaptation, frustratingly easy domain adaptation.
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