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Review: Supervised Learning

Problem formulation of supervised learning.
o Input vector: x = (x1,x0,...,xg)" € R?
@ QOutput: y € R
Lid.
o (xi,yi) =" p(x,y)

o Labeled data: {(x1,y1), (x2,¥2),--, (Xn,¥n)}

e Model: f(x;w) = w'x. (Linear model)

Risk: R(w) = [/ loss(y, f(x; w))p(x, y)dxdy
Empirical Risk: Remp(w) = £ 37 loss(y;, f(x;; w))

Empirical Risk Minimization (ERM): w = argmin ,, Remp(w)
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Semi-Supervised Learning

Problem formulation of semi-supervised learning.

ii.d.
° (Xiayi) ~ p(xvy)

iid.
xi ~" p(x)
Labeled data: {(xlay1)7(x2ay2)7'"7(xn7yn)}
Unlabeled data: {xp+1,Xn+2,..., Xntm}

Usually n << m and n is small

If nis large, it is good to use supervised learning

Semi-supervised learning:
@ We have both labeled and unlabeled samples.
@ Semi-supervised learning uses both labeled and unlabeled samples.

@ The unlabeled samples follow the same distribution of the marginal
distribution of p(x, y)
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Role of unlabeled data

Data generation process
@ Input x is generated by a distribution with probability density p(x)

@ Qutput y for x is generated by conditional distribution with
probability density p(y|x).

Unlabeled data can be used for capturing p(x)

@ input data distribution, input space metric, or better representation.
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Semi-supervised learning problem: Learning with labeled

and unlabeled data

We have both labeled and unlabeled instances (samples):

o Labeled data: {(xlayl)v(x2ay2)7--'7(xmyn)}

@ Unlabeled data: {xp41,Xn+2,.. s Xn+m}

Estimate a deterministic mapping from x to y.
@ Regression

@ Classification

Makoto Yamada myamada@i.kyoto-u.ac. jp

Semi-supervised Learning July/8/2019 5/29



Typical approaches of semi-supervised learning

Weighted maximum likelihood estimation
Graph-based learning
self-training

Clustering

Generative models
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Weighted maximum likelihood

The original goal of ML estimation is to maximize:

Ey.,[log p(y|x)] = / / log P(y|x; w)p(x)p(y|x)dxdy,

~ 7Z|°g .yI’xI ))

where P(y|x; w) is a model. Each training instance is equally weighted.

Note, ML is equivalent to maximize the negative log-likelihood function:

L(w) = log (H P(yilxi; W))

i=1

3 log(P(vlxi )
i=1
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Weighted maximum likelihood

Weighted maximum likelihood:

mme,axz p(x;) log(P(yi|xi; w))
i=1

Each training data instance is weighted by p(x;).
p(x) is estimated by using unlabeled data.
Denser areas are largely weighted

Training a classifier focusing on the dense areas

Dense

———————— =
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Graph-based method

Basic idea: construct a graph capturing the intrinsic shape of input
space, and make prediction on the graph.

Assumption: Data lie on a manifold in the feature space
The graph represent adjacency relationships among data

K-nearest neighbor graph (e.g., Aj =0,1)

Edge-weighted graph with e.g., Aj = exp(—||x; — x;[|3)
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Label propagation

@ Basic idea: Adjacent instances tend to have the same label
e Transductive setting (we have test instances)

n+m n+m

min Z(f Y HAD D A

i=1 j=1
where A > 0 is the regularization parameter.

@ 1st term: (squared) loss function to fit to labeled data.
@ 2nd term: regularization function to make adjacent nodes to have
similar predictions.

yi =1
labeled data c Az’j =1 c unlabeled data
prediction: f; fj
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lllustrative example of label propagation

Predict if people are infected by some disease
@ Test results are known for some people

@ infections spread over social networks

positive :
(+1) : m negative
K < & ()
positive - R ]
(+1)
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Transfer Learning

Supervised Learning:
iid

e Training {(x! ,y,r) 1~ pu(x,y)

o Test (x'e, yte)’ Lid- pte(X,y) (Not observed during training)

® pur = pre (Training and test distributions are same)
Semi-supervised Learning:

o Training {(x", y")}1; "5 pua(x,y), {xi}Em b (x).

o Test (x', yte)’ Lk pte(x,y) (Not observed during training)

@ pur = pre (Training and test distributions are same)

If pty # Ppte, supervised method and semi-supervised method do not
perform well. A possible answer would be Transfer Learning!
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Types of Transfer Learning
Key idea: Reduce generalization error in test data. (not in training data)

Unsupervised transfer learning
e idd.
S Ptr(x,}/)r

o {(x{",yi" )}
€ }ite 1'\51 pte(x) ntr<< Nge

° {xt g
Supervised transfer learning
o {(x". Y R pu(x.y)
" Pre(x,y), e < iy

Nie  1d.d.

o {(x}°,y/)}

Semi-supervised transfer learning
Lid.
b {( i 7yl ) 7211}V ptl"(x7.y)
iLid.
11'\’ pte(x>}/)v Nte < Ny

o {(x}°,¥j°)}
pte( )v Ngy < Nte
July/8/2019

te ”te‘f'”te ii.d.
° {x
Jj=ntet1
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Unsupervised Transfer Learning

Key idea: We assume

@ It does not need to have test label

@ Need some assumption
Standard approaches
@ Importance weighted method (e.g., Covariate shift adaptation)

@ Subspace based method.
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Unsupervised Transfer Learning: Covariate shift adaptation

Problem setup:

Lid.
o {(x, ¥} " pu(x,y),
iLid.
° {X;C 7;61 K pte(x)v Ny << Nte
Key idea: Learning a function so that error in test data is minimized under
the assumption pg(y|x) = pre(y|x)
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Unsupervised Transfer Learning

The risk can be written as

Ptr (X)
Ngr

~ LS w2l
1

Ngr i— ptr(x?r)

tr
Actually, it is a weighted maximum likelihood problem. Note Zzeggr; is a

ratio of probability densities (density-ratio)
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Unsupervised Transfer Learning: Covariate shift adaptation

Exponentially-flattened Importance weighted empirical risk minimization
(IW-ERM):

Ntr tr
Pre(X}")

EL
5 2 Lo e (3 ?f))

where 0 < 7 < 1 is a tuning parameter for stabilizing the covariate shift
adaptation.

e 7=0— ERM
o 0 < 7 <1 — Intermediate
o 7=1IW-ERM
Setting 7 to 0 < 7 < 1 is practically useful.
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Unsupervised Transfer Learning: Covariate shift adaptation

Relative Importance weighted empirical risk minimization (RIW-ERM):

Ntr

- 1 tr te &
feF ntrZ Ly £(x, ))(l—a) Pl

pt prelx?) + apu(xF)

where 0 < 7 < 1 is a tuning parameter for stabilizing the covariate shift
adaptation.

e a=0— ERM
o 0 < o <1 — Intermediate
e o =1IW-ERM

pte(x) 1
1= a)pu(x) + apu(x) ~1—a

ra(x) = (

The density ratio is bounded above by 1/(1 — «).
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Unsupervised Transfer Learning: Importance Weighted

Least Squares

The importance weighted least squares problem can be written as

1 Ny

min J(w) = Z r(x)[lyf — w' {3,

v Mr 52
where r(x) is a weight function (e.g., density-ratio).
Take the derivative w.r.t. w and equating it to zero.

aJ A Z WTxtr)xtr =0

Nty -1 Ner
W= (Z r(x%f)x%fx%”) > r(x )il

i=1 i=1
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Covariate Shift Adaptation: Synthetic Example

Comparison of EIW-LS and RIW-LS:

1.5 ““‘ [¢] 1raitning r ---EIW-LS
. X les J— -
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Supervised Transfer Learning

Problem formulation:
° {( i 7yl ) 7“11}\/ ptr( y)
° {( X; ’-yj )}nt—e RS Pre(X, y), Me < Ny

We assume to have a large number of training samples and a small
number of paired target labeled samples.

o Frustratingly easy domain adaptation

o Multi-task Learning

@ Fine-tuning (Deep Learning)
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Supervised Transfer Learning: Importance Weight

Naive approach: Pooling training and test samples

= [ toss(y. i )z, )iy
= a// loss(y, f(x; w))pu(x, y)dxdy
+a-a) [ / loss(y, F(x; w))pre(x, y)dxdy

Ner Nte

g loss(y\™, f(x!"

where 0 < o < 1 is a tuning parameter to control trade off between source
and target errors.

xj% w)),
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Supervised Transfer Learning: Multi-task Learning

Problem formulation
o TaskL:{(x{", y M)y, "X pi(x, y)

Task2:{ (x?), y2)}2 5 py(x, )

°
°
e TaskM: {(x(M), (M))}"M bR pm(x,y)
@ Linear Models:

fl(x(l)) = wirx(l)7 f2(x(2)) = w;—x(z), e fM(x(M)) = WLX(M)

Wi,...Wpnm

M Nm
min Z ni Z Ioss(y,-(m), (X)) + AR(w, ..., wp).
m=1"" j=1

where R(w1,...,wy) is a regularizer.
@ )\ = 0: Independently optimize ws

@ A > 0: We share some information among models.
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Supervised Transfer Learning: Multi-task Learning

Multi-task learning optimization (Graph-Laplacian).

WIT.i’rL/M Z Zloss(y( ) o (m) —|—)\Z Z Pt [|[Wim — W 3.

m=1m'=1

where rp, v > 0 is a model parameter (similarity between models). If
Im,m > 0, we make w,, and w, close.
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Supervised Transfer Learning: Multi-task Learning

Other approach: Explicitly including shared parameter. We decompose
Wp=wo+ Vp
That is

o A(xM) = (wp + vi)TxM),

o H(x?)) = (wp+ vp)Tx3),

o ...

o fu(xM) = (wo + vp) " xM)

where wq is a common factor for all models.

For squared-loss, we can write the problem as

M
2
min 22 Z(y, (wort-vm) x{™ ) "+ A(Iwol3+ 3 [lvaml3)
ey i m=1
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Supervised Transfer Learning: Frustratingly easy domain

adaptation

A frustratingly easy feature augmentation approach:

Ztr _ (xtrT xtrT OdT)T,

zte (xteT OdT XteT)T,

The inner product of z in the same domain is give as

T T
ztr ztr — 2xtr Xtr7

T T
Zte zte — 2xte Xte7

while we have

T T
Ztr Zte — xtr Xtr? .

Then, we train a supervised learning method with the transformed vectors
z. Super easy!!ll
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Supervised Transfer Learning: Multi-task Learning

Actually, supervised transfer learning can be regarded as a two-task

learning problem. First task is for training and second task is for test.
Let us denote the transformed vectors as

T T

ztr — (xtr xtr OdT)T c R?’d,
T T

zte — (Xte OdT xte )T c R?’d,

where 04 € RY is the vector whose elements are all zero.

And, we consider a linear regression problem: The model parameter of the
linear model can be written as

w = (wg vy va)T c R3

Semi-supervised Learning
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Supervised Transfer Learning: Multi-task Learning

1 Ntr Nte

T T

J(w) = RZIIW— z}! W||2+ ZII ¢ =z w3+ Aw|3

Ti=1

T 2 2
=52 2 (7 = wotva) X ) X (wol3+ D lvalB).

m=1 i=1 m=1
where we use

WTZtr _ (WO + Vl)TXtr, WTZte — (WO + v2)Txte

X = X(l), xte — X(2),

2
w3 = llwoll3 + Y [lvml3-
m=1

Frustratingly easy domain adaptation is a multi-task learning.
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@ Semi-supervised learning. Use unlabeled samples and assume the data
distribution of unlabeled data is same as training.

@ Weighted Maximum Likelihood, Graph-based method.

@ Transfer Learning. Use samples from test data. Training and test
distributions are different.

@ Covariate shift adaptation, frustratingly easy domain adaptation.
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