
Model Ensembles

Makoto Yamada
myamada@i.kyoto-u.ac.jp

Kyoto University

1 / 21

Model ensemble

• One model cannot fit all
• Combine different predictors to improve performance
• Commonly used technique in predictive modeling

competitions (e.g., Kaggle)

1 KYOTO UNIVERSITY

§ One model cannot fit all

§ Combine different predictors to improve performance

§ Commonly used technique in predictive modeling
competitions (e.g. Kaggle)

Model ensemble:
Combining different models to improve performance

Kohei Ozaki: Techniques (Tricks) for Data Mining Competitions
https://speakerdeck.com/smly/techniques-tricks-for-data-mining-competitions 2 / 21

Decision trees

Decision tree: Build a classifier by hierarchically dividing input
space.

1 KYOTO UNIVERSITY

§ Decision tree:

–Hierarchically divides input space

§ Pros:

–Relatively fast

–High interpretability

§ Cons:

– Instable (like other non-linear models)
• Sensitive to noise and hyper-parameters

§ Variants: regression trees, piecewise linear prediction, …

Decision trees:
An off-the-shelf non-linear predictor

!" > 5

!% < 3 !% > 1

) = +1) = −1) = +1) = −1

• Relatively fast (can scale with respect to the number of
samples)

• High interpretability
• Instable (like other non-linear models)
• Sensitive to noise and hyper-parameters

Variants: regression trees, piecewise linear prediction, etc. 3 / 21

Two ways of ensemble

Horizontal ensemble (e.g., bagging, boosting)

• Construct a set of models in parallel
• Integrate their outputs to make final predictions

Vertical ensemble (e.g., Stacking, "deep" neural networks.)

• Make a cascade of models
• Outputs of ℓ-th level models are used as inputs of

ℓ + 1-th level models

1 KYOTO UNIVERSITY

Two ways of ensemble:
Horizontal ensemble and vertical ensemble

Horizontal Ensemble Vertical Ensemble
4 / 21

Parallel ensemble methods

Bagging

• Simple ensemble method based on data resampling
• Random forest is often "the first choice"
• Easily parallelizable

Boosting

• Adaptive version of bagging (weighted sum)
• AdaBoost
• Gradient boosted decision trees (GBDT)
• XGBoost is the regular winner in competitions (e.g.,

Kaggle)
5 / 21

Bagging

• Decision trees are sensitive to data change
• Bootstrapping: Train multiple classifiers using randomly

resampled subsets of the original dataset
• Majority voting to aggregate predictions
• Stable, but lost interpretability

1 KYOTO UNIVERSITY

Bagging:
Majority voting with different predictors
§ Decision trees are sensitive to data change

§ Bootstrapping: Train multiple classifiers using randomly
resampled subsets of the original dataset

§ Majority voting to aggregate predictions

§ Stable, but lost interpretability

Final prediction !

Majority
voting

Original dataset

Resampled subsets Trained trees

6 / 21

Random forest

• Randomly resample not only the data but also features
• Example: 5 samples {1, 2, 3, 4, 5} and 4 features

{A, B, C, D}
• 1st tree trained with 2 features {A, B} on subsamples

{1, 3, 5}
• 2nd tree trained with {A, B, C, D} on subsamples

{1, 2, 3}
• 3rd tree trained with {A, C, D} on subsamples

{2, 3, 4, 5}
• . . .

• Off-the-shelf non-linear model: stable and high
performance

7 / 21

Boosting

• In bagging, all models are independently trained using
uniformly-random resamples

• In boosting, the next model is trained focusing on the
"difficult" data that the current model cannot correctly
classify

8 KYOTO UNIVERSITY

§ In bagging, all models are independently trained using
uniformly-random resamples

§ In boosting, the next model is trained focusing on the
“difficult” data that the current model cannot correctly classify

Boosting:
Adaptive resampling to difficult examples

https://sebastianraschka.com/faq/docs/bagging-boosting-rf.html

Very nice introduction
of bagging, booting,
and random forest

8 / 21

AdaBoost

We consider an additive model:

fm(x) =
m∑

k=1
βkb(x; γk),

where ℓ(y, f(x)) is a loss function and b(x; γm) are basis
function.

Then, the optimization problem is given as

min
{βk,γk}M

k=1

n∑
i=1

ℓ (yi, fM(xi))

If we consider to fit only one basis function, it is feasible:

min
β,γ

n∑
i=1

ℓ (yi, βb(xi; γ))

9 / 21

AdaBoost

The optimization problem:

min
{βm,γm}M

m=1

n∑
i=1

ℓ (yi, fM(xi)) .

We can use the Forward stagewise Additive Modeling. We
solve the optimization for a basis function one by one.

For squared-loss (regression):

ℓ(y, fm(x)) =
(

y −
m∑

k=1
βkb(x; γk)

)2

= (y − fm−1(x)︸ ︷︷ ︸
rm

−βmb(x; γm))2

Estimating βm and γm is easy if we know rm

10 / 21

AdaBoost

Algorithm 1 Forward Stagewise Additive Modeling
1: f0(x)
2: for t = 1 . . . M do
3: (βm, γm) = argmin β,γ

∑n
i=1 ℓ(yi, fm−1(xi) + βb(xi; γ)

4: fm(x) = fm−1(x) + βmb(x; γm)
5: end for
6: return {(βm, γm)}M

m=1

We fit model parameters one by one.

11 / 21

AdaBoost

For classification yi ∈ {−1, 1}, we use the following loss
function:

ℓ(y, fm(x)) = exp(−yfm(x))
= exp(−y(fm−1(x) + βmb(x; γm)))
= exp(−yfm−1(x))︸ ︷︷ ︸

w(m)

exp(−yβmb(x; γm)))

Then, the objective function can be written as

J =
n∑

i=1
w

(m)
i exp(−yiβb(xi; γ)))

Note, βm → β and γm → γ.
12 / 21

AdaBoost

The objective function can be written as

J =
n∑

i=1

w
(m)
i exp(−yiβb(xi; γ)))

=
∑

yi=b(xi;γ)

w
(m)
i exp(−yiβb(xi; γ)) +

∑
yi ̸=b(xi;γ)

w
(m)
i exp(−yiβb(xi; γ))

=
∑

yi=b(xi;γ)

w
(m)
i exp(−β) +

∑
yi ̸=b(xi;γ)

w
(m)
i exp(β)

=
∑

yi=b(xi;γ)

w
(m)
i exp(−β) +

∑
yi ̸=b(xi;γ)

w
(m)
i exp(β)

+
∑

yi ̸=b(xi;γ)

w
(m)
i exp(−β) −

∑
yi ̸=b(xi;γ)

w
(m)
i exp(−β),

where b(xi; γ) ∈ {−1, 1}.

13 / 21

AdaBoost

The objective function can be written as

J =
∑

yi=b(xi;γ)

w
(m)
i exp(−β) +

∑
yi ̸=b(xi;γ)

w
(m)
i exp(β)

+
∑

yi ̸=b(xi;γ)

w
(m)
i exp(−β) −

∑
yi ̸=b(xi;γ)

w
(m)
i exp(−β)

=
n∑

i=1

w
(m)
i exp(−β) +

∑
yi ̸=b(xi;γ)

w
(m)
i (exp(β) − exp(−β))

= exp(−β)
n∑

i=1

w
(m)
i + (exp(β) − exp(−β))

n∑
i=1

w
(m)
i I(yi ̸= b(xi; γ))

where b(xi; γ) ∈ {−1, 1}. Therefore, we can update γm as

γm = argmin
γ

n∑
i=1

w
(m)
i I(yi ̸= b(xi; γ))

14 / 21

AdaBoost

Plugging the estimated γm, we have

J = exp(−β)
n∑

i=1

w
(m)
i + (exp(β) − exp(−β))

n∑
i=1

w
(m)
i I(yi ̸= b(xi; γm))

Taking the derivative of J with respect to β and equate it to
zero, we have

exp(−β)
n∑

i=1

w
(m)
i = (exp(β) + exp(−β))

n∑
i=1

w
(m)
i I(yi ̸= b(xi; γm))

exp(2β) =

∑n

i=1 w
(m)
i∑n

i=1 w
(m)
i I(yi ̸= b(xi; γm))

− 1

βm =
1
2

log
(1 − errm

errm

)
with errm =

∑n

i=1 w
(m)
i I(yi ̸= b(xi; γm))∑n

i=1 w
(m)
i

15 / 21

AdaBoost

Updating w
(m)
i :

fm(xi) = fm−1(xi) + βmb(xi; γm)
−yifm(xi) = −yifm−1(xi) − yiβmb(xi; γm)

exp(−yifm(xi)) = exp(−yifm−1(xi) − yiβmb(xi; γm))

w
(m+1)
i = w

(m)
i exp(−yiβmb(xi; γm))

AdaBoost is

• γm = argmin γ

∑n
i=1 w

(m)
i I(yi ̸= b(xi; γm))

• βm = 1
2 log

(
1−errm

errm

)
with errm =

∑n

i=1 w
(m)
i I(yi ̸=b(xi;γm))∑n

i=1 w
(m)
i

• w
(m+1)
i = w

(m)
i exp(−yiβmb(xi; γm))

16 / 21

XGBoost, LightGBM

• Implementation using gradient boosting + decision tree
(Often appears in top ranked methods in competition)

• Training with constraints on the number of decision tree
leaves and the total weights

17 / 21

Model stacking

Stacking: vertical ensemble method

• is similar to the multi-layer neural network (Neural
Network is a stacked linear classification models)

• but can have heterogeneous components
• Outputs of ℓ-th level models are used as inputs to

ℓ + 1-th level models
• Outputs of 0-th level models y0 is original feature vector
x

• Outputs of ℓ-th level models yℓ

• inputs to ℓ + 1-th level models

xℓ+1 =
[
xℓ

yℓ

]
18 / 21

Difficulty in model stacking

How can we train stacked models?

An easy solution:

• Train a classifier f using the training dataset L

• add the prediction values of f as a new feature
• . . .

this seems to be working... but actually does NOT!

Remember the first principle: you cannot make a prediction for
the data you used in the training! Easily overfitting to the data

The prediction value to the training data are biased because
your model has been trained to reproduce the labels

19 / 21

How to stack?

Divide a given dataset into K non-overlapping sets

• Use K − 1 of them for training a model
• Use the model to add a new feature to the remaining set
• Doing steps 1 and 2 for K hold out sets gives the new

feature for the whole dataset

Train the level-2 predictor using the extended dataset

Finally, the level-1 predictor is (re-)trained using the original
whole dataset

20 / 21

Summary

Summary of this class

• Horizontal ensemble (Bagging,Random forest, Boosting)
• Vertical ensemble (Stacking, "deep" neural networks)

21 / 21

