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Dimensionality Reduction

Dimensionality reduction is a method to reduce the
dimensionality of data.

o Feature selection is a dimensionality reduction method.
Select a set of m features among d features (m < d).

o We use feature selection for interpretation.

e We use dimensionality reduction to compress data, to
visualize data, etc.
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Problem Formulation

Dimension reduction (DR) is to find a low-dimensional
mapping f : R — R™ (d > m) (x € R?)

It is useful for data visualization.

Keep the original information as much as possible

The DR outputs the combination of features.

Linear dimension reduction z = U "z (U € R¥>™),
- T
m+ N m{ U xz -d

d

Nonlinear dimension reduction z = g(x). For example,
deep learning model: g(x) = o(W1(a(W>)))
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Principal Component Analysis

The principal component analysis (PCA) is given as:
U = argmax tr(U'RU),
UTU=I.
where R =137 xx] € R (we assume E[z] = 0) is the
covariance matrix.

Find a direction that maximizes the variance. For 1d case i.e.,
u e R tr(u"Ru) =137 (u'x;)? and E[u'z] = 0.

n
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Obtain the first principal component

To obtain the first principal component:

T u' Ru
argmax u Ru = argmax
uTu=1. HU'H2
where m is a unit vector and ﬁz—‘ is called as the Rayleigh
2

quotient.

Using the Lagrange multiplier A to find a critical point:
L(u) =u Ru — \Nu"u —1)
To take the derivative with respect to u, we have
OL(u)

ou
This is an eigenvalue decomposition problem where \ is the

=2Ru —2\u =0 — Ru = \u.

eigenvalue and w is the eigenvector. Variance is u' Ru = ). 5/19



PCA with eigenvalue decomposition

PCA can be solved by using eigenvalue decomposition of the
covariance matrix R!

The eigenvalue decomposition of covariance matrix R € R%*%:
R=UAU" or U'RU = A
where

o A =diag(M1, N2, ..., M) ERPE N >N >0 > N\ If
R is a positive definite matrix A\; > 0.

e U € R™ is an orthogonal matrix U'U = UU " = I,

o tr(UTRU) =tr(U'UAU'U) = 24, \.
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Relationship to Linear Auto-encoder (1/2)

Assume that E[x] = 0. Then, consider the following linear
Auto-encoder problem:

U = argmin ZH:BZ UU "z;|3,
viu=1r N ;3

The loss function term can be written as

= Z & — UU a2 = Z (2] i — 22] UU T 2; + 2] UUTUU T ;)
i=1

o<~ Z (z]UUTz) WTU=1I)

= ——Z (tr(UTz:i2] U)) (t(AB) = tr(BA))
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Relationship to Linear Auto-encoder (2/2)

The minimization problem can be written as the maximization
problem:

1 n
argmin =Y ||z, — UU "z;||3, > argmax tr(U'RU)
vtu=1 "o Utu=I

Thus, PCA is related to the linear Auto-encoder.
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Nonlinear Auto-encoder

We consider the following Auto-encoder problem:
_ I . )
© =argmin =~ > [lz; — fo(ga(w:))l2,

C] N3

The nonlinear auto-encoder can be illustrated as
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Stochastic Neighbor Embedding (SNE)

The asymmetric probability p;; that i-th sample would pick
7-th sample as its neighbor:
G PR R Y
Y D koti exp(—dz,) Y 207 ’
where o; is a tuning parameter.

The model:
exp(—llyi — y;l13)
Skti &¥P(— 1y — yill3)

ij —

Optimization:

Yi,. .., Yp = argmin ZZpU Iog Pij

Y15y Yy
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Symmetric SNE

The symmetric probability p;; that i-th sample would pick j-th
sample as its neighbor:

I G ) P et 21
Y Ypaexp(—dy) ¥ 202
where o is a tuning parameter.
The model:
_ ep(=lly: — yil3)
! 2okt exp(—|lye — yill3)
Optimization:

. ~ . Dij
Ui, .., Yn = argmin Zprlog =

Y1,--Yn i=1j=1
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t-Stochastic Neighbor Embedding (t-SNE)

The asymmetric probability p;; that i-th sample would pick
7-th sample as its neighbor:
G PR LR Y
v DokAl exp(— d ), Y 202 ,
where o is a tuning parameter.

The model (Cauchy distribution):

W lmmmlp)
T a g —wil3) !

Optimization:

~ =~ Pij
Ui, .., Yy = argmin Zprlog -
Y1, Yn i=1j=1
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t-SNE illustration

Image taken from [1]

(a) Visualization by t-SNE.

t-SNE is heavily used in biology data such as the expression

data.
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Multi-modal Dimensionality Reduction

PCA and auto-encoders are for uni-modal input (i.e., only
image or only text).

How to do dimensionality reduction for multi-modal data (i.e.,
image and text)?

We have (z,y), where € R% and y € R%.

e Linear dimension reduction z, = U " and zy = V.
U € R=*™ and V € RWwx™,

e Nonlinear dimension reduction z, = g,(x) and
Zy = gy(y)'
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Canonical Correlation Analysis (1/3)

Canonical Correlation Analysis (CCA) is to find dimensionality
reduction that maximize the similarity between 2z, = U "z and
=V'y.

Assume that E[x] = 0 and E[y] = 0.

1 n T
_Zz lz:czzyi

\/ Z 1zxzz12\/ Zz 1 yzzyl

Corr(X,Y) =

1 Z za—cr,izy,i = - Z fBTUVTyz

nis i—1

=tr(U'R,,V)

where Ry, = =37 ) @y, € Ré=xd,
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Canonical Correlation Analysis (2/3)

The optimization problem of CCA is given as
U,V = argmax tr(U'R,,V),
UV
st UUR,,U=I,V'R,,V =1,
where Ry, = 3 @x] and Ry, = =30 yiy, .

Then, CCA can be written as

el 2 %))
R.,., O U
o o v[% 212

This is a generalized eigenvalue decomposition (GEV) problem.
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Canonical Correlation Analysis (3/3)

Let us transform the variables as

HRkFal

we can rewrite the CCA optimization problem as

1 o o R..’RuyR,)” | [ ©
max e ([ OT VTl T o v )’
U, v 2 (Ra::tt RZURU!J ) O V
_ _ U
N T T =17
s [ U \4 ] |: e :| 5

Thus, we can solve the CCA problem by using eigenvalue
decomposition!
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Other dimensionality reduction methods

Fisher Discriminant Analysis (FDA)

Independent Component Analysis (ICA)

Sufficient Dimensionality Reduction (SDR)
Locally Linear Embedding (LLE)

e etc.
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Summary of today’s lecture

e Dimensionality reduction (Reduce the dimensionality of
features).

e Feature selection is to interpret features, while
dimensionality reduction is to reduce the dimensionality
(for compression and visualization).

e Principal Component Analysis (PCA)

e Canonical Correlation Analysis (Multi-modal data)
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